Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Moving Average Market Timing in European Energy Markets: Production Versus Emissions

Authors: Chia-Lin Chang; Jukka Ilomäki; Hannu Laurila; Michael McAleer;

Moving Average Market Timing in European Energy Markets: Production Versus Emissions

Abstract

This paper searches for stochastic trends and returns predictability in key energy asset markets in Europe over the last decade. The financial assets include Intercontinental Exchange Futures Europe (ICE-ECX) carbon emission allowances (the main driver of interest), European Energy Exchange (EEX) Coal ARA futures and ICE Brent oil futures (reflecting the two largest energy sources in Europe), Stoxx600 Europe Oil and Gas Index (the main energy stock index in Europe), EEX Power Futures (representing electricity), and Stoxx600 Europe Renewable Energy index (representing the sunrise energy industry). This paper finds that the Moving Average (MA) technique beats random timing for carbon emission allowances, coal, and renewable energy. In these asset markets, there seems to be significant returns predictability of stochastic trends in prices. The results are mixed for Brent oil, and there are no predictable trends for the Oil and Gas index. Stochastic trends are also missing in the electricity market as there is an ARFIMA-FIGARCH process in the day-ahead power prices. The empirical results are interesting for several reasons. We identified the data generating process in EU electricity prices as fractionally integrated (0.5), with a fractionally integrated Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) process in the residual. This is a novel finding. The order of integration of order 0.5 implies that the process is not stationary but less non-stationary than the non-stationary I(1) process, and that the process has long memory. This is probably because electricity cannot be stored. Returns predictability with MA rules requires stochastic trends in price series, indicating that the asset prices should obey the I(1) process, that is, to facilitate long run returns predictability. However, all the other price series tested in the paper are I(1)-processes, so that their returns series are stationary. The empirical results are important because they give a simple answer to the following question: When are MA rules useful? The answer is that, if significant stochastic trends develop in prices, long run returns are predictable, and market timing performs better than does random timing.

Countries
Finland, Taiwan
Keywords

Technology, returns predictability, stochastic trends; returns predictability; moving average; market timing; energy markets, stochastic trends, T, Kansantaloustiede - Economics, 332, moving average, Liiketaloustiede - Business and management, energy markets, market timing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green
gold