
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AC Dielectric Strength of Mineral Oil-Based Fe3O4 and Al2O3 Nanofluids

This paper deals with an experimental study of the influence of conductive (Fe3O4) and insulating (Al2O3) nanoparticles at various concentrations on the dielectric strength of transformer mineral oil. The method of preparation and characterization of these nanofluids (NFs) through the measurements of zeta potential, the real and imaginary parts of dielectric permittivity as well as the concentration and size of nanoparticles using scanning electron microscope images of nanoparticles powders and energy dispersive x-ray spectroscopy analysis are presented. Experimental findings reveal that these two types of nanoparticles materials significantly improve AC breakdown voltage and the magnitude of this enhancement depends on the nanoparticle concentration, and the size and nature (material) of nanoparticles. For a given type of nanoparticle, the effect is more marked with the smallest nanoparticles. The conductive nanoparticles offer higher enhancement of dielectric strength compared with insulating nanoparticle based nanofluids. With Fe3O4, the breakdown voltage (BDV) can exceed twice that of mineral oil and it increases by more than 76% with Al2O3. The physicochemical mechanisms implicated in this improvement are discussed.
normal distribution, Technology, AC dielectric strength; insulating liquids; mineral oil-based nanofluids; statistical analysis; Weibull distribution; normal distribution, T, [SPI.NRJ]Engineering Sciences [physics]/Electric power, 530, 620, mineral oil-based nanofluids, insulating liquids, statistical analysis, electrical_electronic_engineering, Weibull distribution, AC dielectric strength, [SPI.NRJ] Engineering Sciences [physics]/Electric power
normal distribution, Technology, AC dielectric strength; insulating liquids; mineral oil-based nanofluids; statistical analysis; Weibull distribution; normal distribution, T, [SPI.NRJ]Engineering Sciences [physics]/Electric power, 530, 620, mineral oil-based nanofluids, insulating liquids, statistical analysis, electrical_electronic_engineering, Weibull distribution, AC dielectric strength, [SPI.NRJ] Engineering Sciences [physics]/Electric power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
