
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Traveling Wave Fault Location Using Layer Peeling

doi: 10.3390/en12010126
Many fault-location algorithms rely on a simulation model incorporating network parameters which closely represent the real network. Estimations of the line parameters are usually based on limited geometrical information which do not reflect the complexity of a real network. In practice, obtaining an accurate model of the network is difficult without comprehensive field measurements of each constituent part of the network in question. Layer-peeling algorithms offer a solution to this problem by providing a fast “mapping” of the network based only on the response of a probing impulse. Starting with the classical “Schur” layer-peeling algorithm, this paper develops a new approach to map the reflection coefficients of an electrical network, then use this information post-fault to determine accurately and robustly the location of either permanent or incipient faults on overhead networks. The robustness of the method is derived from the similarity between the post-fault energy reaching the observation point and the predicted energy, which is based on real network observations rather than a simulation model. The method is shown to perform well for different noise levels and fault inception angles on the IEEE 13-bus network, indicating that the method is well suited to radial distribution networks.
- Khalifa University
- Cardiff University United Kingdom
- Department of Electrical Engineering and Computer Science Stanford University United States
- Department of Electrical and Computer Engineering Johns Hopkins University United States
- Department of Electrical and Computer Engineering University of Toronto Canada
Technology, traveling wave; fault location; single-ended; layer peeling; schur algorithm, layer peeling, T, traveling wave, fault location, single-ended, schur algorithm
Technology, traveling wave; fault location; single-ended; layer peeling; schur algorithm, layer peeling, T, traveling wave, fault location, single-ended, schur algorithm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
