
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Flow and Fast Fourier Transform Analyses for Tip Clearance Effect in an Operating Kaplan Turbine

doi: 10.3390/en12020264
The Kaplan turbine is an axial propeller-type turbine that can simultaneously control guide vanes and runner blades, thus allowing its application in a wide range of operations. Here, turbine tip clearance plays a crucial role in turbine design and operation as high tip clearance flow can lead to a change in the flow pattern, resulting in a loss of efficiency and finally the breakdown of hydro turbines. This research investigates tip clearance flow characteristics and undertakes a transient fast Fourier transform (FFT) analysis of a Kaplan turbine. In this study, the computational fluid dynamics method was used to investigate the Kaplan turbine performance with tip clearance gaps at different operating conditions. Numerical performance was verified with experimental results. In particular, a parametric study was carried out including the different geometrical parameters such as tip clearance between stationary and rotating chambers. In addition, an FFT analysis was performed by monitoring dynamic pressure fluctuation on the rotor. Here, increases in tip clearance were shown to occur with decreases in efficiency owing to unsteady flow. With this study’s focus on analyzing the flow of the tip clearance and its effect on turbine performance as well as hydraulic efficiency, it aims to improve the understanding on the flow field in a Kaplan turbine.
- Soongsil University Korea (Republic of)
- Soongsil University Korea (Republic of)
Technology, tip clearance, Kaplan turbine, FFT analysis, T, computational fluid dynamics, SST turbulence model
Technology, tip clearance, Kaplan turbine, FFT analysis, T, computational fluid dynamics, SST turbulence model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
