
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language

In this paper we introduce a five-fold approach to open science comprised of open data, open-source software (that is, programming and modeling tools, model code, and numerical solvers), as well as open-access dissemination. The advantages of open energy models are being discussed. A fully open-source bottom-up electricity sector model with high spatial resolution using the Julia programming environment is then being developed, describing source code and a data set for Germany. This large-scale model of the electricity market includes both generation dispatch from thermal and renewable sources in the spot market as well as the physical transmission network, minimizing total system costs in a linear approach. It calculates the economic dispatch on an hourly basis for a full year, taking into account demand, infeed from renewables, storage, and exchanges with neighboring countries. Following the open approach, the model code and used data set are fully publicly accessible and we use open-source solvers like ECOS and CLP. The model is then being benchmarked regarding runtime of building and solving against a representation in GAMS as a commercial algebraic modeling language and against Gurobi, CPLEX, and Mosek as commercial solvers. With this paper we demonstrate in a proof-of-concept the power and abilities, as well as the beauty of open-source modeling systems. This openness has the potential to increase the transparency of policy advice and to empower stakeholders with fewer financial possibilities.
- Technical University of Berlin Germany
- Technical University of Berlin Germany
Technology, JuMP, T, Julia, algebraic modeling language, power systems modeling; open source; algebraic modeling language; optimization; benchmarking; Julia; JuMP, 333 Boden- und Energiewirtschaft, power systems modeling, open source, benchmarking, 004 Datenverarbeitung; Informatik, optimization, ddc: ddc:333, ddc: ddc:004
Technology, JuMP, T, Julia, algebraic modeling language, power systems modeling; open source; algebraic modeling language; optimization; benchmarking; Julia; JuMP, 333 Boden- und Energiewirtschaft, power systems modeling, open source, benchmarking, 004 Datenverarbeitung; Informatik, optimization, ddc: ddc:333, ddc: ddc:004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
