Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weighted Regression-Based Extremum Response Surface Method for Structural Dynamic Fuzzy Reliability Analysis

Authors: Cheng Lu; Yun-Wen Feng; Cheng-Wei Fei;

Weighted Regression-Based Extremum Response Surface Method for Structural Dynamic Fuzzy Reliability Analysis

Abstract

The parameters considered in structural dynamic reliability analysis have strong uncertainties during machinery operation, and affect analytical precision and efficiency. To improve structural dynamic fuzzy reliability analysis, we propose the weighted regression-based extremum response surface method (WR-ERSM) based on extremum response surface method (ERSM) and weighted regression (WR), by considering the randomness of design parameters and the fuzziness of the safety criterion. Therein, we utilize the ERSM to process the transient to improve computational efficiency, by transforming the random process of structural output response into a random variable. We employ the WR to find the efficient samples with larger weights to improve the calculative accuracy. The fuzziness of the safety criterion is regarded to improve computational precision in the WR-ERSM. The WR-ERSM is applied to perform the dynamic fuzzy reliability analysis of an aeroengine turbine blisk with the fluid-structure coupling technique, and is verified by the comparison of the Monte Carlo (MC) method, equivalent stochastic transformation method (ESTM) and ERSM, with the emphasis on model-fitting property and simulation performance. As revealed from this investigation, (1) the ERSM has the capacity of processing the transient of the structural dynamic reliability evaluation, and (2) the WR approach is able to improve modeling accuracy, and (3) regarding the fuzzy safety criterion is promising to improve the precision of structural dynamic fuzzy reliability evaluation, and (4) the change rule of turbine blisk structural stress from start to cruise for the aircraft is acquired with the maximum value of structural stress at t = 165 s and the reliability degree (Pr = 0.997) of turbine blisk. The proposed WR-ERSM can improve the efficiency and precision of structural dynamic reliability analysis. Therefore, the efforts of this study provide a promising method for structural dynamic reliability evaluation with respect to working processes.

Related Organizations
Keywords

turbine blisk, Technology, extremum surface response method, weighted regression, T, dynamic fuzzy reliability analysis; extremum surface response method; weighted regression; turbine blisk; fuzzy safety criterion, fuzzy safety criterion, dynamic fuzzy reliability analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research