
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparative Analysis of Different Methodologies Used to Estimate the Ground Thermal Conductivity in Low Enthalpy Geothermal Systems

doi: 10.3390/en12091672
In ground source heat pump systems, the thermal properties of the ground, where the well field is planned to be located, are essential for proper geothermal design. In this regard, estimation of ground thermal conductivity has been carried out by the implementation of different techniques and laboratory tests. In this study, several methods to obtain the thermal properties of the ground are applied in order to compare them with the reference thermal response test (TRT). These methods (included in previous research works) are carried out in the same geological environment and on the same borehole, in order to make an accurate comparison. All of them provide a certain value for the thermal conductivity of the borehole. These results are compared to the one obtained from the TRT carried out in the same borehole. The conclusions of this research allow the validation of alternative solutions based on the use of a thermal conductive equipment and the application of geophysics techniques. Seismic prospecting has been proven as a highly recommendable indicator of the thermal conductivity of a borehole column, obtaining rate errors of below 1.5%.
- University of Salamanca Spain
ground source heat pump, thermal response test, ground source heat pump; thermal conductivity; thermal response test; thermal conductive equipment; geophysics, Technology, thermal conductive equipment, geophysics, T, thermal conductivity
ground source heat pump, thermal response test, ground source heat pump; thermal conductivity; thermal response test; thermal conductive equipment; geophysics, Technology, thermal conductive equipment, geophysics, T, thermal conductivity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
