

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Text-Mining Approach to Assess the Failure Condition of Wind Turbines Using Maintenance Service History

doi: 10.3390/en12101982
handle: 10261/197432 , 2117/165840
A Text-Mining Approach to Assess the Failure Condition of Wind Turbines Using Maintenance Service History
Detecting and determining which systems or subsystems of a wind turbine have more failures is essential to improve their design, which will reduce the costs of generating wind power. Two of the most critical failures, the generator and gearbox, are analyzed and characterized with four metrics. This failure analysis usually begins with the identification of the turbine’s condition, a process normally performed by an expert examining the wind turbine’s service history. This is a time-consuming task, as a human expert has to examine each service entry. To automate this process, a new methodology is presented here, which is based on a set of steps to preprocess and decompose the service history to find relevant words and sentences that discriminate an unhealthy wind turbine period from a healthy one. This is achieved by means of two classifiers fed with the matrix of terms from the decomposed document of the training wind turbines. The classifiers can extract essential words and determine the conditions of new turbines of unknown status using the text from the service history, emulating what a human expert manually does when labelling the training set. Experimental results are promising, with accuracy and F-score above 90% in some cases. Condition monitoring system can be improved and automated using this system, which helps the expert in the tedious task of identifying the relevant words from the turbine service history. In addition, the system can be retrained when new knowledge becomes available and may therefore always be as accurate as a human expert. With this new tool, the expert can focus on identifying which systems or subsystems can be redesigned to increase the efficiency of wind turbines.
wind turbine; service history; classification; fault diagnosis; renewable energy; text mining, and methods, Renewable energy, Technology, Text mining, Service history, text mining, Numerical analysis--Simulation methods, Mechanics, Mecànica, :Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], wind turbine, service history, :65 Numerical analysis::65C Probabilistic methods, simulation and stochastic differential equations [Classificació AMS], Fault diagnosis, :70 Mechanics of particles and systems::70G General models, approaches, and methods [Classificació AMS], Anàlisi numèrica, Àrees temàtiques de la UPC::Matemàtiques i estadística, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, T, approaches, Renewable energies, :Matemàtiques i estadística [Àrees temàtiques de la UPC], simulation and stochastic differential equations, Classificació AMS::70 Mechanics of particles and systems::70G General models, fault diagnosis, Classification, Classificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods, renewable energy, Classificació AMS::65 Numerical analysis::65C Probabilistic methods, simulation and stochastic differential equations, classification, Classificació AMS::65 Numerical analysis::65C Probabilistic methods, Wind turbine
wind turbine; service history; classification; fault diagnosis; renewable energy; text mining, and methods, Renewable energy, Technology, Text mining, Service history, text mining, Numerical analysis--Simulation methods, Mechanics, Mecànica, :Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], wind turbine, service history, :65 Numerical analysis::65C Probabilistic methods, simulation and stochastic differential equations [Classificació AMS], Fault diagnosis, :70 Mechanics of particles and systems::70G General models, approaches, and methods [Classificació AMS], Anàlisi numèrica, Àrees temàtiques de la UPC::Matemàtiques i estadística, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, T, approaches, Renewable energies, :Matemàtiques i estadística [Àrees temàtiques de la UPC], simulation and stochastic differential equations, Classificació AMS::70 Mechanics of particles and systems::70G General models, fault diagnosis, Classification, Classificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods, renewable energy, Classificació AMS::65 Numerical analysis::65C Probabilistic methods, simulation and stochastic differential equations, classification, Classificació AMS::65 Numerical analysis::65C Probabilistic methods, Wind turbine
17 Research products, page 1 of 2
- 2017IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 93 download downloads 84 - 93views84downloads
Data source Views Downloads DIGITAL.CSIC 33 40 UPCommons. Portal del coneixement obert de la UPC 60 44


