
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reduction of Heat Losses in a Pre-Insulated Network Located in Central Poland by Lowering the Operating Temperature of the Water and the Use of Egg-shaped Thermal Insulation: A Case Study

doi: 10.3390/en12112104
This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.
pre-insulated heating networks; district heating; network; egg-shaped thermal insulation; twin pipes; energy savings; pollutants emission, Technology, twin pipes, T, egg-shaped thermal insulation, pre-insulated heating networks, energy savings, network, pollutants emission, district heating
pre-insulated heating networks; district heating; network; egg-shaped thermal insulation; twin pipes; energy savings; pollutants emission, Technology, twin pipes, T, egg-shaped thermal insulation, pre-insulated heating networks, energy savings, network, pollutants emission, district heating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
