
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hardware-in-the-Loop Validation of Model Predictive Control of a Discrete Fluid Power Power Take-Off System for Wave Energy Converters

doi: 10.3390/en12193668
Model predictive control based wave power extraction algorithms have been developed and found promising for wave energy converters. Although mostly proven by simulation studies, model predictive control based algorithms have shown to outperform classical wave power extraction algorithms such as linear damping and reactive control. Prediction models and objective functions have, however, often been simplified a lot by for example, excluding power take-off system losses. Furthermore, discrete fluid power forces systems has never been validated experimentally in published research. In this paper a model predictive control based wave power extraction algorithm is designed for a discrete fluid power power take-off system. The loss models included in the objective function are based on physical models of the losses associated with discrete force shifts and throttling. The developed wave power extraction algorithm directly includes the quantized force output and the losses models of the discrete fluid power system. The experimental validation of the wave power extraction algorithm developed in the paper shown an increase of 14.6% in yearly harvested energy when compared to a reactive control algorithm.
- Aalborg University Denmark
Experimental validation, Technology, discrete fluid power pto, model predictive control, Wave energy, T, Discrete fluid power PTO, experimental validation, Model predictive control, real-time mpc, Real-time MPC, wave energy
Experimental validation, Technology, discrete fluid power pto, model predictive control, Wave energy, T, Discrete fluid power PTO, experimental validation, Model predictive control, real-time mpc, Real-time MPC, wave energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
