
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines

doi: 10.3390/en12193707
Buried pipeline systems play a vital role in energy storage and transportation, especially for fluid energies like water and gas. The ability to locate buried pipes is of great importance since it is fundamental for leakage detection, pipeline maintenance, and pipeline repair. The vibro-acoustic locating method, as one of the most effective detection technologies, has been studied by many researchers. However, previous studies have mainly focused on vibro-acoustic propagation in buried water pipes. Limited research has been conducted on buried gas pipes. In this paper, the behavior of gas-dominated wave motion will be investigated and compared against water-dominated wave motion by adapting an established analytical model of axisymmetric wave motion in buried fluid-filled pipes. Furthermore, displacement profiles in spatial domain resulting from gas-dominated wave in buried gas pipeline systems will be analyzed, and the effects of pipe material, soil property, as well as mode wave type will be discussed in detail. An effective radiation coefficient (ERC) is proposed to measure the effective radiation ability of gas-dominated wave and water-dominated wave. It is observed that the gas-dominated wave in gas pipes cannot radiate into surrounded soil as effectively as water-dominated wave in water pipes because of the weak coupling between gas and pipe-soil. In this case, gas-dominated wave may not be the best choice as the target wave for locating buried gas pipes. Therefore, the soil displacements result from the shell-dominated wave are also investigated and compared with those from gas-dominated wave. The results show that for buried gas pipes, the soil displacements due to radiation of shell-dominated wave are stronger than gas-dominated wave, which differs from buried water pipe. Hence, an effectively exciting shell-dominated wave is beneficial for generating stronger vibration signals and obtaining the location information. The findings of this study provide theoretical insight for optimizing the current vibro-acoustic method when locating buried gas pipes.
- State Key Laboratory of Acoustics China (People's Republic of)
- Chinese Academy of Science (中国科学院) China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
- Edith Cowan University Australia
- University of Chinese Academy of Sciences China (People's Republic of)
Technology, displacements profiles, [RSTDPub], T, Axisymmetric waves, Displacements profiles, 535, Engineering, axisymmetric waves, vibro-acoustic method, Vibro-acoustic method, gas pipe locating, Gas pipe locating
Technology, displacements profiles, [RSTDPub], T, Axisymmetric waves, Displacements profiles, 535, Engineering, axisymmetric waves, vibro-acoustic method, Vibro-acoustic method, gas pipe locating, Gas pipe locating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
