
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features

doi: 10.3390/en12224366
Online accurate estimation of remaining useful life (RUL) of lithium-ion batteries is a necessary feature of any smart battery management system (BMS). In this paper, a novel partial discharge data (PDD)-based support vector machine (SVM) model is proposed for RUL prediction. The proposed algorithm extracts the critical features from the voltage and temperature of PDD to train the SVM models. The classification and regression attributes of SVM are utilized to classify and predict accurate RUL. The different ranges of PDD were analyzed to find the optimal range for training the SVM model. The SVM model trained with optimal PDD features classifies the RUL into six different classes for gross estimation, and the support vector regression is used to estimate the accurate value of the last class. The classification and predictive performance of SVM model trained using the full discharge data and PDD are compared for publicly available data. Results show that the SVM classification and regression model trained with PDD features can accurately predict the RUL with low storage pressure on BMS. The PDD-based SVM model can be utilized for online RUL estimation in electric vehicles.
- Pusan National University Korea (Republic of)
- Pusan National University Korea (Republic of)
- University of Wah Pakistan
- University of Wah Pakistan
battery management system (bms), Technology, partial discharge data (pdd), classification, remaining useful life (rul), T, battery management system (BMS); remaining useful life (RUL); support vector machine (SVM); partial discharge data (PDD); classification, support vector machine (svm)
battery management system (bms), Technology, partial discharge data (pdd), classification, remaining useful life (rul), T, battery management system (BMS); remaining useful life (RUL); support vector machine (SVM); partial discharge data (PDD); classification, support vector machine (svm)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
