
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intelligent Fault Classification and Location Identification Method for Microgrids Using Discrete Orthonormal Stockwell Transform-Based Optimized Multi-Kernel Extreme Learning Machine

doi: 10.3390/en12234504
This paper proposes an intelligent fault classification and location identification method for microgrids using discrete orthonormal Stockwell transform (DOST)-based optimized multi-kernel extreme learning machine (MKELM). The proposed method first extracts useful statistical features from one cycle of post-fault current signals retrieved from sending-end relays of microgrids using DOST. Then, the extracted features are normalized and fed to the MKELM as an input. The MKELM, which consists of multiple kernels in the hidden nodes of an extreme learning machine, is used for the classification and location of faults in microgrids. A genetic algorithm is employed to determine the optimum parameters of the MKELM. The performance of the proposed method is tested on the standard IEC microgrid test system for various operating conditions and fault cases, including different fault locations, fault resistance, and fault inception angles using the MATLAB/Simulink software. The test results confirm the efficacy of the proposed method for classifying and locating any type of fault in a microgrid with high performance. Furthermore, the proposed method has higher performance and is more robust to measurement noise than existing intelligent methods.
- National University of Sciences and Technology Pakistan
- Sungkyunkwan University Korea (Republic of)
- Sungkyul University Korea (Republic of)
- Center for Advanced Energy Studies United States
- Center for Advanced Energy Studies United States
discrete orthonormal Stockwell transform; distributed energy resources; fault classification; fault location; microgrid; multi-kernel extreme learning machine
discrete orthonormal Stockwell transform; distributed energy resources; fault classification; fault location; microgrid; multi-kernel extreme learning machine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
