
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Overcharge Cycling Effect on the Surface Layers and Crystalline Structure of LiFePO4 Cathodes of Li-Ion Batteries
doi: 10.3390/en12244652
Electrochemical cells using LiFePO4 cathode material are considered one of the safest and most resistant to overcharging among Li-ion batteries. However, if LiFePO4-based electrodes are exposed to high potentials, surface and structural changes may occur in the electrode material. In this study Li/LiFePO4 half-cells were overcharged under different modes with variable cut-off voltages and charge currents. The change in voltage profile, discharge capacity, surface layers composition, and crystalline structure were characterized after overcharge cycles. It was demonstrated that the cathode material is resistant to short-term overcharging up to 5 V, but undergoes irreversible changes with increasing overcharge time or potential. Thus, despite the well-known tolerance of LiFePO4-based batteries to overcharge, a long overcharge time or high cut-off voltage leads to destructive changes in the cathode and should be avoided.
- ITMO University Russian Federation
- St Petersburg University Russian Federation
- ITMO University Russian Federation
overcharge, lithium iron phosphate, Li-ion batteries, SEI layer, LiFePO<sub>4</sub>
overcharge, lithium iron phosphate, Li-ion batteries, SEI layer, LiFePO<sub>4</sub>
