

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Long Road to Universal Electrification: A Critical Look at Present Pathways and Challenges

doi: 10.3390/en13030508
Nearly 840 million people still lack access to electricity, while over a billion more have an unreliable electricity connection. In this article, the three different electrification pathways—grid extension, centralized microgrids, and standalone solar-based solutions, such as pico-solar and solar home systems (SHS)—are critically examined while understanding their relative merits and demerits. Grid extension can provide broad scale access at low levelized costs but requires a certain electricity demand threshold and population density to justify investments. To a lesser extent, centralized (off-grid) microgrids also require a minimum demand threshold and knowledge of the electricity demand. Solar-based solutions are the main focus in terms of off-grid electrification in this article, given the equatorial/tropical latitudes of the un(der-)electrified regions. In recent times, decentralized solar-based off-grid solutions, such as pico-solar and SHS, have shown the highest adoption rates and promising impetus with respect to basic lighting and electricity for powering small appliances. However, the burning question is—from lighting a million to empowering a billion—can solar home systems get us there?The two main roadblocks for SHS are discussed, and the requirements from the ideal electrification pathway are introduced. A bottom-up, interconnected SHS-based electrification pathway is proposed as the missing link among the present electrification pathways.
- Delft University of Technology Netherlands
- University of Twente Netherlands
Technology, microgrids, T, Multi-tier framework, solar home systems, 600, multi-tier framework, sdg 7, SDG 7 - Affordable and Clean Energy, rural electrification, Microgrids, Rural electrification, SDG 7, Solar home systems
Technology, microgrids, T, Multi-tier framework, solar home systems, 600, multi-tier framework, sdg 7, SDG 7 - Affordable and Clean Energy, rural electrification, Microgrids, Rural electrification, SDG 7, Solar home systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 5 download downloads 1 - 5views1downloads
Data source Views Downloads TU Delft Repository 5 1


