
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Model Based IAS Analysis for Fault Detection and Diagnosis of IC Engine Powertrains

doi: 10.3390/en13030565
Internal combustion (IC) engine based powertrains are one of the most commonly used transmission systems in various industries such as train, ship and power generation industries. The powertrains, acting as the cores of machinery, dominate the performance of the systems; however, the powertrain systems are inevitably degraded in service. Consequently, it is essential to monitor the health of the powertrains, which can secure the high efficiency and pronounced reliability of the machines. Conventional vibration based monitoring approaches often require a considerable number of transducers due to large layout of the systems, which results in a cost-intensive, difficultly-deployed and not-robust monitoring scheme. This study aims to develop an efficient and cost-effective approach for monitoring large engine powertrains. Our model based investigation showed that a single measurement at the position of coupling is optimal for monitoring deployment. By using the instantaneous angular speed (IAS) obtained at the coupling, a novel fault indicator and polar representation showed the effective and efficient fault diagnosis for the misfire faults in different cylinders under wide working conditions of engines; we also verified that by experimental studies. Based on the simulation and experimental investigation, it can be seen that single IAS channel is effective and efficient at monitoring the misfire faults in large powertrain systems.
- University of Huddersfield United Kingdom
- Beijing Institute of Technology China (People's Republic of)
- University of Huddersfield United Kingdom
- Beijing Institute of Technology China (People's Republic of)
- Qingdao Agricultural University China (People's Republic of)
Technology, model, T, powertrain, IAS; powertrain; torsional vibration; model; misfire; fault detection, torsional vibration, misfire, fault detection, ias
Technology, model, T, powertrain, IAS; powertrain; torsional vibration; model; misfire; fault detection, torsional vibration, misfire, fault detection, ias
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
