Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utilization of CO2 as Cushion Gas for Depleted Gas Reservoir Transformed Gas Storage Reservoir

Authors: Cheng Cao; Jianxing Liao; Zhengmeng Hou; Hongcheng Xu; Faisal Mehmood; Xuning Wu;

Utilization of CO2 as Cushion Gas for Depleted Gas Reservoir Transformed Gas Storage Reservoir

Abstract

Underground gas storage reservoirs (UGSRs) are used to keep the natural gas supply smooth. Native natural gas is commonly used as cushion gas to maintain the reservoir pressure and cannot be extracted in the depleted gas reservoir transformed UGSR, which leads to wasting huge amounts of this natural energy resource. CO2 is an alternative gas to avoid this particular issue. However, the mixing of CO2 and CH4 in the UGSR challenges the application of CO2 as cushion gas. In this work, the Donghae gas reservoir is used to investigate the suitability of using CO2 as cushion gas in depleted gas reservoir transformed UGSR. The impact of the geological and engineering parameters, including the CO2 fraction for cushion gas, reservoir temperature, reservoir permeability, residual water and production rate, on the reservoir pressure, gas mixing behavior, and CO2 production are analyzed detailly based on the 15 years cyclic gas injection and production. The results showed that the maximum accepted CO2 concentration for cushion gas is 9% under the condition of production and injection for 120 d and 180 d in a production cycle at a rate of 4.05 kg/s and 2.7 kg/s, respectively. The typical curve of the mixing zone thickness can be divided into four stages, which include the increasing stage, the smooth stage, the suddenly increasing stage, and the periodic change stage. In the periodic change stage, the mixed zone increases with the increasing of CO2 fraction, temperature, production rate, and the decreasing of permeability and water saturation. The CO2 fraction in cushion gas, reservoir permeability, and production rate have a significant effect on the breakthrough of CO2 in the production well, while the effect of water saturation and temperature is limited.

Keywords

underground gas storage reservoir; cushion gas; CO<sub>2</sub>; CO<sub>2</sub> storage; CO<sub>2</sub> utilization, Technology, co<sub>2</sub> storage, T, co<sub>2</sub>, cushion gas, co<sub>2</sub> utilization, underground gas storage reservoir

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
gold