

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatio-Temporal Assessment of Climate Change Impact on Wave Energy Resources Using Various Time Dependent Criteria

doi: 10.3390/en13030768
handle: 2433/250203
The wave energy resources in the Indian Ocean can be considered as a potential alternative to fossil fuels. However, the wave energy resources are subject to short-term fluctuations and long-term changes due to climate change. Hence, considering sustainable development goals, it is necessary to assess both short-term (intra-annual) variation and long-term change. For this purpose, the simulated wave characteristics were utilized, and the wave power and its variation and change were analyzed in the whole domain and nearshore areas. The short-term fluctuation was investigated in terms of monthly and seasonal variations and the future change was discussed based on absolute and relative changes. Both analyses show that the Southern Indian Ocean, despite experiencing extreme events and having higher wave energy potential, is more stable in terms of both short and long-term variation and change. The assessment of the total and exploitable storages of wave energy and their future change revealed the higher potential and higher stability of the nearshores of the Southern Indian Ocean. It can be concluded that based on various factors, the south of Sri Lanka, Horn of Africa, southeast Africa, south of Madagascar and Reunion and Mauritius islands are the most suitable areas for wave energy extraction.
- Delft University of Technology Netherlands
- Kyoto University Japan
- University of Strathclyde United Kingdom
wave power, Technology, Electrical engineering. Electronics Nuclear engineering, 550, Climate stability, Wave energy, 333, monthly variability, wave energy; wave power; monthly variability; climate stability; Indian Ocean, climate stability, Indian Ocean, indian ocean, T, 600, Monthly variability, wave energy, Wave power
wave power, Technology, Electrical engineering. Electronics Nuclear engineering, 550, Climate stability, Wave energy, 333, monthly variability, wave energy; wave power; monthly variability; climate stability; Indian Ocean, climate stability, Indian Ocean, indian ocean, T, 600, Monthly variability, wave energy, Wave power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 8 download downloads 2 - 8views2downloads
Data source Views Downloads TU Delft Repository 8 2


