
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design and Modeling of an Integrated Flywheel Magnetic Suspension for Kinetic Energy Storage Systems

doi: 10.3390/en13040847
Design and Modeling of an Integrated Flywheel Magnetic Suspension for Kinetic Energy Storage Systems
The paper presents a novel configuration of an axial hybrid magnetic bearing (AHMB) for the suspension of steel flywheels applied in power-intensive energy storage systems. The combination of a permanent magnet (PM) with excited coil enables one to reduce the power consumption, to limit the system volume, and to apply an effective control in the presence of several types of disturbances. The electromagnetic design of the AHMB parts is carried out by parametric finite element analyses with the purpose to optimize the force performances as well as the winding inductance affecting the electrical supply rating and control capability. Such investigation considers both the temperature dependence of the PM properties and the magnetic saturation effects. The electrical parameters and the force characteristics are then implemented in a control scheme, reproducing the electromechanical behavior of the AHMB-flywheel system. The parameter tuning of the controllers is executed by a Matlab/Simulink code, examining the instantaneous profiles of both the air-gap length and the winding ampere-turns. The results of different dynamic tests are presented, evidencing the smooth air-gap changes and the optimized coil utilization, which are desirable features for a safe and efficient flywheel energy storage.
- University of Padua Italy
Technology, magnetic levitation, energy storage, T, permanent magnets, force control, magnetic bearings, flywheel
Technology, magnetic levitation, energy storage, T, permanent magnets, force control, magnetic bearings, flywheel
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
