
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Kinetic Characterization of Enzymatic Hydrolysis of Apple Pomace as Feedstock for a Sugar-Based Biorefinery

doi: 10.3390/en13051051
handle: 11588/830736 , 20.500.14243/381237 , 11386/4771404
The enzymatic hydrolysis of cellulose from biomass feedstock in the sugar-based biorefinery chain is penalized by enzyme cost and difficulty to approach the theoretical maximum cellulose conversion degree. As a consequence, the process is currently investigated to identify the best operating conditions with reference to each biomass feedstock. The present work reports an investigation regarding the enzymatic hydrolysis of apple pomace (AP). AP is an agro-food waste largely available in Europe that might be exploited as a sugar source for biorefinery purposes. A biomass pre-treatment step was required before the enzymatic hydrolysis to make available polysaccharides chains to the biocatalyst. The AP samples were pre-treated through alkaline (NaOH), acid (HCl), and enzymatic (laccase) delignification processes to investigate the effect of lignin content and polysaccharides composition on enzymatic hydrolysis. Enzymatic hydrolysis tests were carried out using a commercial cocktail (Cellic®CTec2) of cellulolytic enzymes. The effect of mixing speed and biomass concentration on the experimental overall glucose production rate was assessed. The characterization of the glucose production rate by the assessment of pseudo-homogeneous kinetic models was proposed. Data were analysed to assess kinetic parameters of pseudo-mechanistic models able to describe the glucose production rate during AP enzymatic hydrolysis. In particular, pseudo-homogeneous Michaelis and Menten, as well as Chrastil’s models were used. The effect of lignin content on the enzymatic hydrolysis rate was evaluated. Chrastil’s model provided the best description of the glucose production rate.
Technology, T, enzymatic hydrolysis, biomass pre-treatment, Biomass pre-treatment, Waste biomass, waste biomass, Kinetics, enzymatic hydrolysis; waste biomass; kinetics; biomass pre-treatment, Enzymatic hydrolysis, kinetics, Biomass pre-treatment; Enzymatic hydrolysis; Kinetics; Waste biomass
Technology, T, enzymatic hydrolysis, biomass pre-treatment, Biomass pre-treatment, Waste biomass, waste biomass, Kinetics, enzymatic hydrolysis; waste biomass; kinetics; biomass pre-treatment, Enzymatic hydrolysis, kinetics, Biomass pre-treatment; Enzymatic hydrolysis; Kinetics; Waste biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
