Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finite Element Analysis of the Breakdown Prediction for LDPE Stressed by Various Ramp Rates of DC Voltage Based on Molecular Displacement Model

Authors: Minhee Kim; Su-Hun Kim; Se-Hee Lee;

Finite Element Analysis of the Breakdown Prediction for LDPE Stressed by Various Ramp Rates of DC Voltage Based on Molecular Displacement Model

Abstract

Predicting the electrical breakdown of polymers is critical for certifying the endurance and lifetime of high voltage power equipment. Since various factors contribute nonlinearly to the breakdown phenomena of polymer insulators, it is difficult to assess the impact of each factor independently. In this study, we numerically analyzed the breakdown phenomenon because of the ramp rate of the DC voltage applied to a polymer insulator, low-density polyethylene (LDPE), using the finite element method (FEM). To predict the breakdown initiation, we analyzed the relaxation time of the conduction current through the insulator as a significant indicator. The bipolar charge transport (BCT) model was used to analyze the charge behavior within the LDPE, and the breakdown voltage was predicted by incorporating the molecular displacement model. This analysis was conducted for a wide range of ramp rates from 10 to 1500 V/s. The current density was calculated using two different methods, namely the energy and average methods, and the results were compared with each other. The results of the numerical model were further verified by comparing with those from experiments reported in the literature.

Related Organizations
Keywords

fem, FEM, Technology, breakdown, LDPE, T, bipolar charge transport (bct), insulator, ldpe, molecular displacement, bipolar charge transport (BCT), ramp rate

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research