
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Transparent Photonic Crystal Heat Mirrors for Solar Thermal Applications

doi: 10.3390/en13061464
Numerical calculations are performed to determine the potential of using one-dimensional transparent photonic crystal heat mirrors (TPCHMs) as transparent coatings for solar receivers. At relatively low operating temperatures of 500 K, the TPCHMs investigated herein do not provide a significant advantage over conventional transparent heat mirrors that are made using transparent conducting oxide films. However, the results show that TPCHMs can enhance the performance of transparent solar receiver covers at higher operating temperatures. At 1000 K, the amount of radiation reflected by a transparent cover back to the receiver can be increased from 40.4% to 60.0%, without compromising the transmittance of solar radiation through the cover, by using a TPCHM in the place of a conventional transparent mirror with a In2O3:Sn film. For a receiver operating temperature of 1500 K, the amount of radiation reflected back to the receiver can be increased from 25.7% for a cover that is coated with a In2O3:Sn film to 57.6% for a cover with a TPCHM. The TPCHM that is presented in this work might be useful for high-temperature applications where high-performance is required over a relatively small area, such as the cover for evacuated receivers or volumetric receivers in Sterling engines.
- York University Canada
Technology, solar receivers, T, solar energy, thermal photonics, transparent heat mirror, photonic crystals, solar energy; transparent heat mirror; photonic crystals; solar receivers; thermal photonics
Technology, solar receivers, T, solar energy, thermal photonics, transparent heat mirror, photonic crystals, solar energy; transparent heat mirror; photonic crystals; solar receivers; thermal photonics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
