
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increasing Compressed Gas Energy Storage Density Using CO2–N2 Gas Mixture

doi: 10.3390/en13102431
Increasing Compressed Gas Energy Storage Density Using CO2–N2 Gas Mixture
This paper demonstrates a new method by which the energy storage density of compressed air systems is increased by 56.8% by changing the composition of the compressed gas to include a condensable component. A higher storage density of 7.33 MJ/m3 is possible using a mixture of 88% CO2 and 12% N2 compared to 4.67 MJ/m3 using pure N2. This ratio of gases representing an optimum mixture was determined through computer simulations that considered a variety of different proportions from pure CO2 to pure N2. The computer simulations are based on a thermodynamic equilibrium model that predicts the mixture composition as a function of volume and pressure under progressive compression to ultimately identify the optimal mixture composition (88% CO2 + 12% N2). The model and simulations predict that the optimal gas mixture attains a higher energy storage density than using either of the pure gases.
- Oak Ridge National Laboratory United States
- Oak Ridge National Laboratory United States
Technology, T, GLIDES, compressed air storage, binary mixture, pumped storage, vapor liquid equilibrium
Technology, T, GLIDES, compressed air storage, binary mixture, pumped storage, vapor liquid equilibrium
3 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
