
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review

doi: 10.3390/en13123132
handle: 10578/41261
Operation and maintenance (O&M) activities represent a significant share of the total expenditure of a wind farm. Of these expenses, costs associated with unexpected failures account for the highest percentage. Therefore, it is clear that early detection of wind turbine (WT) failures, which can be achieved through appropriate condition monitoring (CM), is critical to reduce O&M costs. The use of Supervisory Control and Data Acquisition (SCADA) data has recently been recognized as an effective solution for CM since most modern WTs record large amounts of parameters using their SCADA systems. Artificial intelligence (AI) techniques can convert SCADA data into information that can be used for early detection of WT failures. This work presents a systematic literature review (SLR) with the aim to assess the use of SCADA data and AI for CM of WTs. To this end, we formulated four research questions as follows: (i) What are the current challenges of WT CM? (ii) What are the WT components to which CM has been applied? (iii) What are the SCADA variables used? and (iv) What AI techniques are currently under research? Further to answering the research questions, we identify the lack of accessible WT SCADA data towards research and the need for its standardization. Our SLR was developed by reviewing more than 95 scientific articles published in the last three years.
- University of Castile-La Mancha Spain
- Universidad Nacional de Loja Ecuador
- Universidad Nacional de Loja Ecuador
SCADA data, Artificial intelligence, Technology, condition monitoring, T, artificial intelligence, Condition monitoring, wind turbine, Fault prediction, Wind turbine, fault prediction
SCADA data, Artificial intelligence, Technology, condition monitoring, T, artificial intelligence, Condition monitoring, wind turbine, Fault prediction, Wind turbine, fault prediction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
