
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions

doi: 10.3390/en13133404
The paper considers technical and economic possibilities to provide geothermal heat to individual recipients using a mobile thermal storage system (M-TES) in Polish conditions. The heat availability, temperature and heat cost influence the choice of location—Bańska Niżna, near Zakopane in the southern part of the Poland. The indirect contact energy storage container was selected with phase change material characterized by a melting temperature of 70 °C and a heat storage capacity of 250 kJ/kg, in the amount of 800 kg. The economic profitability of the M-TES system (with a price per warehouse of 6000 EUR, i.e., a total of 12,000 EUR—two containers are needed) can be achieved for a heat demand of 5000 kWh/year with the price of a replaced heat source at the level of 0.21 EUR/kWh and a distance between the charging station and building (heat recipient) of 0.5 km. For the heat demand of 15,000 kWh/year, the price for the replaced heat reached EUR 0.11/kWh, and the same distance. In turn, for a demand of 25,000 kWh/year, the price of the replaced heat source reached 0.085 EUR/kWh. The distance significantly affected the economic profitability of the M-TES system—for the analyzed case, a distance around 3–4 km from the heat source should be considered.
- Polish Academy of Learning Poland
- AGH University of Science and Technology Poland
- Jagiellonian University Poland
Technology, mobile thermal energy storage (M-TES), T, LCOH, geothermal energy; mobile thermal energy storage (M-TES); phase change material (PCM); LCOH; heat transport; renewable energy source, geothermal energy, phase change material (PCM), renewable energy source, heat transport
Technology, mobile thermal energy storage (M-TES), T, LCOH, geothermal energy; mobile thermal energy storage (M-TES); phase change material (PCM); LCOH; heat transport; renewable energy source, geothermal energy, phase change material (PCM), renewable energy source, heat transport
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
