Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/eh...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/4r...
Other literature type . 2020
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms

تحسين استهلاك الطاقة وزيادة راحة المستخدم في المباني الذكية باستخدام مزيج من اليراعات والخوارزميات الجينية
Authors: Fazli Wahid; Muhammad Fayaz; Ayman Aljarbouh; Masood Mir; Muhammad Aamir; Imran Imran;

Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms

Abstract

This research work proposed a hybrid model to maximize energy consumption and maximize user comfort in residential buildings. The proposed model consists of two widely used optimization algorithms named the firefly algorithm (FA) and genetic algorithm (GA). The hybridization of two optimization approaches results in a better optimization process, leading to better performance of the process in terms of minimum power consumption and maximum occupant’s comfort. The inputs of the optimization model are illumination, temperature, and air quality from the user, in addition with the external environment. The outputs of the proposed model are the optimized values of illumination, temperature, and air quality, which are, in turn, used in computing the values of user comfort. After the computation of the comfort index, these values enter the fuzzy controllers, which are used to adjust the cooling/heating system, illumination system, and ventilation system according to the occupant’s requirement. A user-friendly environment for power consumption minimization and user comfort maximization using data from different sensors, user, processes, power control systems, and various actuators is proposed in this work. The results obtained from the hybrid model have been compared with many state-of-the-art optimization algorithms. The final results revealed that the proposed approach performed better as compared to the standard optimization techniques.

Keywords

Technology, Building Energy Efficiency and Thermal Comfort Optimization, Computational chemistry, Energy Efficiency, FOS: Mechanical engineering, Energy Consumption, indoor environment, Thermal comfort, Engineering, Urban Heat Islands and Mitigation Strategies, Cooling Strategies, Optimization problem, Building Energy Consumption, Energy Simulation, Minification, T, Particle swarm optimization, Physics, Mathematical optimization, Power (physics), air quality, visual quality, Programming language, Energy minimization, Algorithm, Chemistry, Genetic algorithm, Physical Sciences, Thermodynamics, fuzzy logic, optimization, Simulation, thermal quality, Environmental Engineering, residential building, Firefly algorithm, Quantum mechanics, Refrigeration Systems and Technologies, Real-time computing, energy consumption, Machine learning, FOS: Mathematics, Mechanical Engineering, FOS: Environmental engineering, Building and Construction, Computer science, Process (computing), Energy consumption, Operating system, Electrical engineering, Environmental Science, Maximization, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 1%
Top 10%
Top 1%
gold