Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Effects of Building Energy Efficiency Measures on Air Quality at the Neighborhood Level in Athens, Greece

Authors: orcid Natasha Frilingou;
Natasha Frilingou
ORCID
Harvested from ORCID Public Data File

Natasha Frilingou in OpenAIRE
orcid Demetri Bouris;
Demetri Bouris
ORCID
Harvested from ORCID Public Data File

Demetri Bouris in OpenAIRE

Effects of Building Energy Efficiency Measures on Air Quality at the Neighborhood Level in Athens, Greece

Abstract

The high concentration of pollutant sources, complex topography, and regional meteorology are all factors that may contribute to air episodes in dense urban areas. Energy use in buildings is a significant source of pollution in the Greater Athens Area (GAA), Greece, where over 90% of the existing building stock has been classified below energy class B. The present study focuses on the potential effects that a realistic level of building energy efficiency upgrades will have on the air quality over the GAA. Results are expected to be relevant to similar urban areas. Furthermore, the study of primary pollutants’ dispersion is applied at a 1.2 × 1.2 km spatial resolution, providing significant local (neighborhood) level information. Numerical simulations were performed using EPA’s CALPUFF modeling system with wind field input from an independent numerical weather prediction using NCAR’s Weather Research and Forecasting (WRF) model. In order to calculate emission rates from major roads, highways, shipping ports, residential heating installations, and major industrial facilities, data were taken from National and European statistics, demographics, and local topography. After validation, the modeling system was used to examine three building energy efficiency upgrade scenarios, implemented on 20% of the buildings. Ground level concentrations of SO2, NOx, CO, and PM10 were calculated and reductions of up to 9% were found for GAA maximum values but up to 18% for local values that were also close to or above the European safety thresholds.

Keywords

mesoscale pollutant dispersion simulation, Technology, building energy efficiency, T, numerical weather prediction, urban air quality

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold