Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study

Authors: orcid Enrique A. Enríquez-Velásquez;
Enrique A. Enríquez-Velásquez
ORCID
Harvested from ORCID Public Data File

Enrique A. Enríquez-Velásquez in OpenAIRE
orcid bw Victor H. Benitez;
Victor H. Benitez
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Victor H. Benitez in OpenAIRE
orcid Sergey G. Obukhov;
Sergey G. Obukhov
ORCID
Harvested from ORCID Public Data File

Sergey G. Obukhov in OpenAIRE
orcid bw Luis C. Félix-Herrán;
Luis C. Félix-Herrán
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Luis C. Félix-Herrán in OpenAIRE
orcid Jorge de-J. Lozoya-Santos;
Jorge de-J. Lozoya-Santos
ORCID
Harvested from ORCID Public Data File

Jorge de-J. Lozoya-Santos in OpenAIRE

Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study

Abstract

A model developed at the University of Tomsk, Russia, for high latitudes (over 55° N) is proposed and applied to the analysis and observation of the solar resource in the state of Sonora in the northwest of Mexico. This model utilizes satellite data and geographical coordinates as inputs. The objective of this research work is to provide a low-cost and reliable alternative to field meteorological stations and also to obtain a wide illustration of the distribution of solar power in the state to visualize opportunities for sustainable energy production and reduce its carbon footprint. The model is compared against real-time data from meteorological stations and satellite data, using statistical methods to scrutinize its accuracy at local latitudes (26–32° N), where a satisfactory performance was observed. An annual geographical view of available solar radiation against maximum and minimum temperatures for all the state municipalities is provided to identify the photovoltaic electricity generation potential. The outcomes are proof that the model is economically viable and could be employed by local governments to plan solar harvesting strategies. The results are generated from an open source model that allows calculating the available solar radiation over specific land areas, and the application potential for future planning of solar energy projects is evident.

Keywords

Technology, solar radiation, T, GIS analysis, solar resource assessment, performance evaluation, photovoltaic potential, mathematical model based on satellite data

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold