
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Application of Ensemble Methods with Data Resampling Techniques for Drill Bit Selection in the Oil and Gas Industry

doi: 10.3390/en14020432
Selection of the most suitable drill bit type is an important task for drillers when planning for new oil and gas wells. With the advancement of intelligent predictive models, the automated selection of drill bit type is possible using earlier drilled offset wells’ data. However, real-field well data samples naturally involve an unequal distribution of data points that results in the formation of a complex imbalance multi-class classification problem during drill bit selection. In this analysis, Ensemble methods, namely Adaboost and Random Forest, have been combined with the data re-sampling techniques to provide a new approach for handling the complex drill bit selection process. Additionally, four popular machine learning techniques namely, K-nearest neighbors, naïve Bayes, multilayer perceptron, and support vector machine, are also evaluated to understand the performance degrading effects of imbalanced drilling data obtained from Norwegian wells. The comparison of results shows that the random forest with bootstrap class weighting technique has given the most impressive performance for bit type selection with testing accuracy ranges from 92% to 99%, and G-mean (0.84–0.97) in critical to normal experimental scenarios. This study provides an approach to automate the drill bit selection process over any field, which will minimize human error, time, and drilling cost.
drill bits selection, Technology, T, ensemble methods, petroleum data analytics, imbalanced data
drill bits selection, Technology, T, ensemble methods, petroleum data analytics, imbalanced data
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
