
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Theoretical and Experimental Analysis of Aerodynamic Noise in Small Wind Turbines

doi: 10.3390/en14030727
handle: 10396/21034
Theoretical and Experimental Analysis of Aerodynamic Noise in Small Wind Turbines
This paper presents an analysis of sound pressure levels through theoretical modeling and experimental validation in a 1 kW small wind turbine. The models used in the theoretical analysis are BPM (Brooks, Pope, and Marcolini) and BM (Brooks and Marcolini), where wind turbine blades are divided in sections, and each section has its own contribution with respect to the total emitted sound pressure level. The noise propagation study and its experimental validation were accomplished within the requirements of the standard IEC 61400-11 Ed.3 and the standard NOM-081-SEMARNAT-1994. The comparative study of theoretical and experimental results showed that the BPM and BM methods have a maximum error of 5.5% corresponding to the rated wind speed of 10 m/s. However, at low wind speeds, the theoretical models fit well to experimental data, for example, in the range from 5 to 8 m/s. The experimental data showed that the rotor’s aerodynamic noise is more evident at low wind speed, because under these conditions, environmental noise is much less than wind turbine noise. Finally, to prevent possible negative effects on people’s health, there is a recommended minimum and suitable distance between small wind turbine installations and buildings.
Technology, small wind turbine, aeroacoustic, T, sound pressure level; aeroacoustic; boundary layer; noise emission; aerodynamic profile; small wind turbine, boundary layer, aerodynamic profile, sound pressure level, noise emission, Boundary layer, Sound pressure level, Small wind turbine, Aeroacoustic, Aerodynamic profile, Noise emission
Technology, small wind turbine, aeroacoustic, T, sound pressure level; aeroacoustic; boundary layer; noise emission; aerodynamic profile; small wind turbine, boundary layer, aerodynamic profile, sound pressure level, noise emission, Boundary layer, Sound pressure level, Small wind turbine, Aeroacoustic, Aerodynamic profile, Noise emission
3 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
