
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of a District Trigeneration Biomass Powered Double Organic Rankine Cycle as Primed Mover and Supported Cooling

doi: 10.3390/en14041030
This study presents a combined cooling, heating, and power system powered by biogas, suitable for small scale communities in remote locations. To run such a system, in order to obtain the daily life essentials of electricity, hot water, and cooling, municipal waste can be considered as an option. Furthermore, the organic Rankine cycle part of the organic Rankine cycle powered vapor compression chiller can be used in times of need for additional electric production. The system comprises a medium temperature organic Rankine cycle utilizing M-xylene as its working fluid, and the cooling was covered by an Isobutane vapor compression cycle powered by an R245fa employing organic Rankine cycle. The system analyzed was designated to provide 250 kW of electricity. The energetic and exergetic analysis was performed, considering several system design parameters. The impact of the design parameters in the prime mover has a much greater effect on the whole system. The system proposed can deliver cooling values at the rate between 9.19 and 22 kW and heating values ranging from 879 up to 1255 kW, depending on the design parameter. Furthermore, the second law efficiency of the system was found to be approximately 56% at the baseline conditions and can be increased to 64.5%.
- Kunsan National University Korea (Republic of)
- Pusan National University Korea (Republic of)
- Pusan National University Korea (Republic of)
- Ferdowsi University of Mashhad Iran (Islamic Republic of)
- Ferdowsi University of Mashhad Iran (Islamic Republic of)
CCHP, Technology, biomass, trigeneration, T, organic Rankine cycle, vapor compression chillers, renewable energy integration, organic Rankine cycle; vapor compression chillers; trigeneration; CCHP; biomass; renewable energy integration
CCHP, Technology, biomass, trigeneration, T, organic Rankine cycle, vapor compression chillers, renewable energy integration, organic Rankine cycle; vapor compression chillers; trigeneration; CCHP; biomass; renewable energy integration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
