
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Elbows of Internal Resistance Rise Curves in Li-Ion Cells

The degradation of lithium-ion cells with respect to increases of internal resistance (IR) has negative implications for rapid charging protocols, thermal management and power output of cells. Despite this, IR receives much less attention than capacity degradation in Li-ion cell research. Building on recent developments on ‘knee’ identification for capacity degradation curves, we propose the new concepts of ‘elbow-point’ and ‘elbow-onset’ for IR rise curves, and a robust identification algorithm for those variables. We report on the relations between capacity’s knees, IR’s elbows and end of life for the large dataset of the study. We enhance our discussion with two applications. We use neural network techniques to build independent state of health capacity and IR predictor models achieving a mean absolute percentage error (MAPE) of 0.4% and 1.6%, respectively, and an overall root mean squared error below 0.0061. A relevance vector machine, using the first 50 cycles of life data, is employed for the early prediction of elbow-points and elbow-onsets achieving a MAPE of 11.5% and 14.0%, respectively.
- University of Edinburgh United Kingdom
early prediction, Technology, T, elbow-points, lithium-ion battery, internal resistance, parameter identification
early prediction, Technology, T, elbow-points, lithium-ion battery, internal resistance, parameter identification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
