
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Development of Hankel Singular-Hypergraph Feature Extraction Technique for Acoustic Partial Discharge Pattern Classification
doi: 10.3390/en14061564
Different types of classifiers for acoustic partial discharge (PD) pattern classification have been widely discussed in the literature. The classifier performance mainly depends on the measurement conditions (location and type of the PD, acoustic sensor position and frequency response) as well as extracted features. Recent research posits that features extracted by singular value decomposition (SVD) can exhibit the natural characteristics and energy contained in the signal. Though the technique by itself is not novel, in this paper, SVD is employed for PD classification in a revised way starting from data arrangement in Hankel form, to embedding the hypergraph-based features and finally to extracting the required set of optimal features. The algorithm is tested for various measurement conditions that include the influences of various PD locations and oil temperatures. The robustness of the algorithm is also tested using noisy PD signals. Experimental results show the proposed feature extraction method supremacy.
hyper features; partial discharge (PD); pattern classification; singular value decomposition; singular features, Technology, pattern classification, partial discharge (PD), T, hyper features, singular value decomposition, singular features
hyper features; partial discharge (PD); pattern classification; singular value decomposition; singular features, Technology, pattern classification, partial discharge (PD), T, hyper features, singular value decomposition, singular features
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
