
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink

doi: 10.3390/en14071832
The intensification of heat transfer using two-phase boiling flow in mini-channels is widely used to dissipate the high heat fluxes in miniaturized electronic devices. However, the process itself is not fully recognized and still requires experimental studies and developing computation methods appropriate for them. The main aim of this work was the mathematical modeling of time-dependent heat transfer process in FC-72 flow boiling in a mini-channel heat sink with five parallel mini-channels of 1 mm depth. Channels have an asymmetrically heated wall while its outer temperature was measured by infrared thermography. The opposite wall of the mini-channels was transparent, helping to record flow patterns due to a high-speed digital camera. The objective of the numerical calculations was to determine the heat transfer coefficient on the wall-fluid contact surface from the Robin boundary condition. The problem was solved using methods based on the Trefftz-type functions. Three mathematical methods were applied in calculations: the FEM with Trefftz type basis functions, the Classical Trefftz Method, and the Hybrid Picard-Trefftz Method. The results were compared with the values of the heat transfer coefficient obtained from theoretical correlations from the literature.
FEM, Technology, flow boiling, T, flow boiling; heat transfer coefficient; mini-channel; time-dependent; Trefftz functions; FEM; Picard method, heat transfer coefficient, time-dependent, Trefftz functions, mini-channel
FEM, Technology, flow boiling, T, flow boiling; heat transfer coefficient; mini-channel; time-dependent; Trefftz functions; FEM; Picard method, heat transfer coefficient, time-dependent, Trefftz functions, mini-channel
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
