
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biochemical Conversion of Lignocellulosic Biomass from Date Palm of Phoenix dactylifera L. into Ethanol Production

doi: 10.3390/en14071887
Cellulosic fibers from date palm are among the most promising lignocellulose feedstock for biorefinery purposes. The world production is between 1.9 and 2.4 million t/year. Initially, a pretreatment with dilute-sulphuric acid of these fibers was performed using a response surface methodology, with temperature and process time as factors. The aim is to produce bioethanol from young and old fibers from date palm, Phoenix dactylifera L. Optimal thermochemical pretreatment conditions for both fibers palms were 220 °C in hydrothermal conditions (without acid); in these conditions pretreated young fibers presented a maximum content in holocelluloses of 45.18% and old fibers 61.97%. Subsequently, during the enzymatic hydrolysis a maximum yield of total reducing sugars (TRS) was reached, 46.32 g/100 g for pretreated dry young fibers and 48.54 g/100 g for pretreated dry old fibers. After enzymatic saccharification, hydrolysates were fermented by Pachysolen tannophilus (ATCC 32691) to ethanol, reaching yields (YE/TRS) of 37.94 g ethanol/100 g of TRS for young fibers and 35.84 g ethanol/100 g of TRS for old fibers. Globally, considering the full process, in the fermentation of the hydrolysates, a yield (YE) of 10.64 g ethanol/100 g of dry young fibers and 10.88 g ethanol/100 g of dry old fibers was reached.
Technology, T, <i>P. tannophilus</i>, enzymatic hydrolysis, ethanol, pretreatment, fermentation, cellulosic fibers from date palm
Technology, T, <i>P. tannophilus</i>, enzymatic hydrolysis, ethanol, pretreatment, fermentation, cellulosic fibers from date palm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
