Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.25455/wg...
Other literature type . 2021
License: CC BY NC ND
Data sources: Datacite
https://dx.doi.org/10.25455/wg...
Other literature type . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of the Potential for Green Hydrogen Fuelling of Very Heavy Vehicles in New Zealand

Authors: Rapha Perez; Alan Brent; James Hinkley;

Assessment of the Potential for Green Hydrogen Fuelling of Very Heavy Vehicles in New Zealand

Abstract

This study examined the feasibility of green hydrogen as a transport fuel for the very heavy vehicle (VHV) fleet in New Zealand. Green hydrogen is assumed to be produced through water electrolysis using purely renewable energy (RE) as an electricity source. This study chose very heavy vehicles as a potential market for green hydrogen, because it is considered “low-hanging fruit” for hydrogen fuel in a sector where battery electrification is less feasible. The study assumed a large-scale, decentralized, embedded (dedicated) grid-connected hydrogen system of production using polymer electrolytic membrane (PEM) electrolysers. The analysis comprised three steps. First, the hydrogen demand was calculated. Second, the additional RE requirement was determined and compared with consented, but unbuilt, capacity. Finally, the hydrogen production cost was calculated using the concept of levelized cost. Sensitivity analysis and cost reduction scenarios were also undertaken. The results indicate an overall green hydrogen demand for VHVs of 71 million kg, or 8.5 PJ, per year, compared to the 14.7 PJ of diesel fuel demand for the same VHV travelled kilometres. The results also indicate that the estimated 9824 GWh of RE electricity that could be generated from consented, yet unbuilt, RE projects is greater than the electricity demand for green hydrogen production, which was calculated to be 4492 GWh. The calculated levelized hydrogen cost is NZD 6.83/kg. Electricity cost was found to be the most significant cost parameter for green hydrogen production. A combined cost reduction for CAPEX and electricity translates to a hydrogen cost reduction in 10 to 20 years.

Keywords

Technology, levelized cost of hydrogen, green hydrogen fuel, T, green hydrogen fuel; very heavy vehicles; electrolysis; levelized cost of hydrogen, very heavy vehicles, electrolysis, FOS: Electrical engineering, electronic engineering, information engineering, 90608 Renewable Power and Energy Systems Engineering (excl. Solar Cells), Uncategorized

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
gold