
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Novel Single-Phase Grid-Tied NPC Five-Level Converter with an Inherent DC-Link Voltage Balancing Strategy for Power Quality Improvement

doi: 10.3390/en14092644
This paper presents a novel single-phase grid-tied neutral-point-clamped (NPC) five-level converter (SPFLC). Unlike the literature on five-level NPC topologies, the proposed one is capable of inherently balancing the voltage of the DC-link split capacitors. For this purpose, a simple Multicarrier Phase Disposition (MPD) Pulse Width Modulation (PWM) technique is used, thus avoiding both complex modifications to the Space Vector Modulation (SVM) and offset voltage injections into the carrier based (CB) PWM, as commonly done in most conventional balancing algorithms. Bearing in mind that the proposed balancing strategy only requires measuring the capacitors’ voltages and the sign of the converter output current, it has a very low complexity. The developed strategy is not only straightforwardly implemented but is also very effective for obtaining symmetrical and undistorted voltage levels from the proposed multilevel converter, as well as for significantly improving the power quality of the SPFLC output voltage and, in turn, of the grid current. The simulation results obtained with MATLAB-SimPowerSystems as well as the experimental results obtained with the prototype built in the laboratory validate the topology of the proposed NPC five-level converter and the voltage balancing strategy, by showing a good performance under step-changes and exhaustive operating test conditions.
- University of the Witwatersrand South Africa
- École de Technologie Supérieure Canada
- Instituto Tecnólogico de La Laguna Mexico
Technology, capacitor voltage balancing, T, vector control, power quality, NPC topology, single-phase multilevel converter; NPC topology; grid-tied; capacitor voltage balancing; vector control; power quality, single-phase multilevel converter, grid-tied
Technology, capacitor voltage balancing, T, vector control, power quality, NPC topology, single-phase multilevel converter; NPC topology; grid-tied; capacitor voltage balancing; vector control; power quality, single-phase multilevel converter, grid-tied
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
