
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Influence of Engine Downsizing in Hybrid Powertrains on the Energy Flow Indicators under Actual Traffic Conditions

doi: 10.3390/en14102872
The development of internal combustion engines is currently based around the ideas of downsizing and rightsizing. These trends, however, are not very widespread in vehicles with hybrid drive systems. Nevertheless, the authors analyzed the performance indicators of hybrid drives in downsized vehicles. Two generations of a vehicle model, equipped with hybrid drive systems, were used in the analysis in which not only the design of the internal combustion engine was changed, but also other hybrid drive systems (including the transmission, electric motors and high-voltage batteries). The paper analyzes the energy flow in two hybrid vehicles of different generations during tests in real road driving conditions in accordance with the requirements of the RDE (real driving emissions) tests. The authors have confirmed that newer vehicle designs extend the vehicle range by 38% in the electric mode under the conditions of road traffic (68% in the urban conditions). The application of a combustion engine with better operating indexes did not result in its greater load, but led to limitation of the maximum pressure-volume (PV) diagram. The change of the battery to Li-ion, despite its lower electric and energy capacity, led to an increase in vehicle’s working parameters (power and regenerative braking).
Technology, hybrid powertrain, T, electric range, energy flow, combustion engine, hybrid powertrain; energy flow; combustion engine; electric range
Technology, hybrid powertrain, T, electric range, energy flow, combustion engine, hybrid powertrain; energy flow; combustion engine; electric range
