Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lithium-Ion Capacitor Lifetime Extension through an Optimal Thermal Management System for Smart Grid Applications

Authors: Danial Karimi; Sahar Khaleghi; Hamidreza Behi; Hamidreza Beheshti; Md Hosen; Mohsen Akbarzadeh; Joeri Van Mierlo; +1 Authors

Lithium-Ion Capacitor Lifetime Extension through an Optimal Thermal Management System for Smart Grid Applications

Abstract

A lithium-ion capacitor (LiC) is one of the most promising technologies for grid applications, which combines the energy storage mechanism of an electric double-layer capacitor (EDLC) and a lithium-ion battery (LiB). This article presents an optimal thermal management system (TMS) to extend the end of life (EoL) of LiC technology considering different active and passive cooling methods. The impact of different operating conditions and stress factors such as high temperature on the LiC capacity degradation is investigated. Later, optimal passive TMS employing a heat pipe cooling system (HPCS) is developed to control the LiC cell temperature. Finally, the effect of the proposed TMS on the lifetime extension of the LiC is explained. Moreover, this trend is compared to the active cooling system using liquid-cooled TMS (LCTMS). The results demonstrate that the LiC cell temperature can be controlled by employing a proper TMS during the cycle aging test under 150 A current rate. The cell’s top surface temperature is reduced by 11.7% using the HPCS. Moreover, by controlling the temperature of the cell at around 32.5 and 48.8 °C, the lifetime of the LiC would be extended by 51.7% and 16.5%, respectively, compared to the cycling of the LiC under natural convection (NC). In addition, the capacity degradation for the NC, HPCS, and LCTMS case studies are 90.4%, 92.5%, and 94.2%, respectively.

Country
Belgium
Related Organizations
Keywords

lifetime, Technology, Thermal management system (TMS), grid application, T, lifetime; lithium-ion capacitor (LiC); thermal management system (TMS); heat pipe cooling system (HPCS); grid application, heat pipe cooling system (HPCS), lithium-ion capacitor (LiC), Lithium-ion capacitor (LiC), thermal management system (TMS)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 1%
Top 10%
Top 10%
Green
gold