
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon

doi: 10.3390/en14102952
Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon
Inexpensive carbon sources offering an alternative to glucose are searched for to reduce costs of docosahexaenoic acid production by microalgae. The use of waste glycerol seems substantiated and prospective in this case. The objective of this study was to determine the production yield of heterotrophic microalgae Schizochytrium sp. biomass and the efficiency of docosahexaenoic acid production in various types of cultures with waste glycerol. Cultivation conditions were optimized using the Plackett–Burman method and Response Surface Methodology. The highest technological performance was obtained in the fed-batch culture, where the concentration of Schizochytrium sp. biomass reached 103.44 ± 1.50 g/dm3, the lipid concentration in Schizochytrium sp. biomass was at 48.85 ± 0.81 g/dm3, and the docosahexaenoic acid concentration at 21.98 ± 0.36 g/dm3. The highest docosahexaenoic acid content, accounting for 61.76 ± 3.77% of total fatty acids, was determined in lipid bodies of the Schizochytrium sp. biomass produced in the batch culture, whereas the lowest one, accounting for 44.99 ± 2.12% of total fatty acids, in those of the biomass grown in the fed-batch culture.
cultivation methods, Technology, heterotrophic culture, microalgae, T, glycerol, docosahexaenoic acid
cultivation methods, Technology, heterotrophic culture, microalgae, T, glycerol, docosahexaenoic acid
2 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
