
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Geometrical Changes in an Adiabatic Portion on the Heat Transfer Performance of a Two-Phase Closed Thermosiphon System

doi: 10.3390/en14113070
In this study, a modified non-uniform adiabatic section in a Two-Phase Closed Thermosiphon (TPCT) is proposed where the uniform section was replaced by convergent and divergent (C-D) sections. The heat transfer analysis was performed on the modified TPCT and their findings were compared with standard TPCT. The deionized water (DI) in the proportion of 30 vol% is filled in both the TPCTs. Further, the heat transfer performance analysis was carried out for three different orientations, such as 0°, 45° and 90°, and heat input was varied from 50 to 250 W. The effect of these geometrical changes and inclination angles on the heat transfer performance of both the TPCT were evaluated to compare the thermal resistance, wall temperature variation and heat transfer coefficient. The non-dimensional numbers such as Weber (WE), Bond (BO), Condensation (CO) and Kutateladze (KU) were investigated based on heat fluxes for both TPCTs. By introducing the convergent-divergent section nearer to the condenser, the pressure before and after the C-D section was increased and decreased. This enhances the heat transfer in the evaporator slightly up to 2% and 1.4% at horizontal and 45° orientation, respectively, in Non-Uniformed Adiabatic Section (NUAS) TPCT when compared to Uniformed Adiabatic Section (UAS) TPCT. The thermal resistance of NUAS TPCT was reduced by up to 4.5% relative to UAS TPCT in horizontal and 45°. The results of the non-dimensional number also confirmed that NUAS TPCT provided better performance by enhancing 2% more pool boiling characteristics, interaction forces and condensate returns. Several factors such as gravity assistance, fluid accumulation, pressure drop and thermal resistance exert an influence on the heat transfer performance of the proposed NUAS TPCT at various orientation angles. However, different type of cross-sectional variations subjected to orientation changes may also get influenced by several other parameters that in turn affect the heat transfer performance distinctly.
- The University of Texas System United States
- Texas A&M University United Kingdom
- Texas A&M University
- Texas A&M University United Kingdom
- Prince Sultan University Saudi Arabia
heat transfer co-efficient, Technology, adiabatic section, T, two-phase closed thermosiphon; geometric changes; adiabatic section; heat transfer co-efficient, geometric changes, two-phase closed thermosiphon
heat transfer co-efficient, Technology, adiabatic section, T, two-phase closed thermosiphon; geometric changes; adiabatic section; heat transfer co-efficient, geometric changes, two-phase closed thermosiphon
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
