
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model

doi: 10.3390/en14113220
Fossil fuels in transportation are a significant source of local emissions in and around cities; thus, decarbonising transportation can reduce both greenhouse gases (GHGs) and air pollutants (APs). However, the degree of these reductions depends on what replaces fossil fuels. Today, GHG and AP mitigation strategies are typically ‘decoupled’ as they have different motivations and responsibilities. This study investigates the ancillary benefits on (a) APs if the transport sector is decarbonised, and (b) GHGs if APs are drastically cut and (c) the possible co-benefits from targeting APs and GHGs in parallel, using an energy-system optimisation model with a detailed and consistent representation of technology and fuel choices. While biofuels are the most cost-efficient option for meeting ambitious climate-change-mitigation targets, they have a very limited effect on reducing APs. Single-handed deep cuts in APs require a shift to zero-emission battery electric and hydrogen fuel cell vehicles (BEVs, HFCVs), which can result in significant upstream GHG emissions from electricity and hydrogen production. BEVs powered by ‘green’ electricity are identified as the most cost-efficient option for substantially cutting both GHGs and APs. A firm understanding of these empirical relationships is needed to support comprehensive mitigation strategies that tackle the range of sustainability challenges facing cities.
- "LULEA TEKNISKA UNIVERSITET Sweden
- Luleå University of Technology Sweden
Technology, urban energy system, air pollution policy, T, energy-system optimisation model, climate policy, ancillary benefits, climate policy; air pollution policy; ancillary benefits; energy-system optimisation model; urban energy system
Technology, urban energy system, air pollution policy, T, energy-system optimisation model, climate policy, ancillary benefits, climate policy; air pollution policy; ancillary benefits; energy-system optimisation model; urban energy system
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
