
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone

doi: 10.3390/en14123450
Electric power distribution networks plays a significant role in providing continuous electrical energy to different categories of customers. In the context of the present advancements, future load expansion in the active distribution networks (ADNs) poses the key challenge of planning to be derived as a multi-stage optimization task, including the optimal expansion planning scheme optimization (EPSO). The planning scheme optimization is a multi-attribute decision-making issue with high complexity and solving difficulty, especially when it involves a large-scale planning zone. This paper proposes a novel approach of a multi-year planning scheme for the effective solution of the EPSO problem in large planning zones. The proposed approach comprises three key parts, where the first part covers two essential aspects, i.e., (i) suggesting a project condition set that considers the elements directly related to a group of specific conditions and requirements (collectively referred to as conditions) to ADN planning projects; and (ii) Developing a condition scoring system to evaluate planning projects. The second part of our proposed scheme is a quantization method of correlativity among projects based on two new concepts: contribution index (CI) and dependence index (DI). Finally, considering the multi-year rolling optimization, a detailed mathematical model of condition evaluation and spatiotemporal optimization sequencing of ADN planning projects is developed, where the evaluation and optimization are updated annually. The proposed model has been successfully validated on a practical distribution network located in Xiantao, China. The investigated case study and comparisons verify the various advantages, suitability, and effectiveness of the proposed planning scheme, consequently saving more than 10% of the investment compared with the existing implemented scheme.
- Huazhong University of Science and Technology China (People's Republic of)
rolling optimization method, Technology, T, active distribution network expansion planning, multi-year planning, multi-attribute decision-making, quantization method of correlativity
rolling optimization method, Technology, T, active distribution network expansion planning, multi-year planning, multi-attribute decision-making, quantization method of correlativity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
