
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Grid-Scale Ternary-Pumped Thermal Electricity Storage for Flexible Operation of Nuclear Power Generation under High Penetration of Renewable Energy Sources

doi: 10.3390/en14133858
handle: 1721.1/133200 , 1721.1/133200.2
In this work, the integration of a grid-scale ternary-Pumped Thermal Electricity Storage (t-PTES) with a nuclear power generation to enhance operation flexibility is assessed using physics-based models and digital real time simulation. A part of the electricity from the nuclear power generation is delivered to the grid, and the balance is used to power a heat pump that can be augmented by an auxiliary resistive load element to increase the charging rate of the thermal storage. This increases the thermal potential between hot and cold thermal stores (usually solid materials or molten salts inside large storage tanks). The thermal energy is transformed back into electricity by reversing the heat pump cycle. Different transient scenarios including startup, shutdown, and power change for grid-connected operation are simulated to determine the behavior of the hybrid nuclear-t-PTES system operating under variable loads that constitute a departure from conventional, baseload nuclear plant operation schemes. Ternary refers to the three modes operation: (i) heat pump (including heating coil), (ii) heat engine, and (iii) simultaneous operation of heat pump (including heating coil) and heat engine during changeover from pumping to generation or vice-versa. The controllability of t-PTES in the short timescales as a dynamic load is used to demonstrate operational flexibility of hybrid nuclear plants for flexible operation through advanced load management. The integration of t-PTES into nuclear power systems enhances the system flexibility and is an enabler for high penetration of renewable energy resources.
- Florida State University United States
- National Renewable Energy Laboratory United States
- Florida Southern College United States
- National Renewable Energy Laboratory United States
- Massachusetts Institute of Technology United States
grid integration, Technology, T, 621, thermal-electrical co-simulation, ternary-Pumped Thermal Electricity Storage (t-PTES); nuclear reactor; flexible operation; thermal-electrical co-simulation; grid integration, ternary-Pumped Thermal Electricity Storage (t-PTES), nuclear reactor, flexible operation
grid integration, Technology, T, 621, thermal-electrical co-simulation, ternary-Pumped Thermal Electricity Storage (t-PTES); nuclear reactor; flexible operation; thermal-electrical co-simulation; grid integration, ternary-Pumped Thermal Electricity Storage (t-PTES), nuclear reactor, flexible operation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
