
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone

doi: 10.3390/en14134026
The recent reports from the Intergovernmental Panel on Climate Change (IPCC) urge for the reconceptualization of our design of the urban built environments. However, current efforts to integrate urban environmental assessment into practice in Egypt are proving insufficient. This paper utilises the Ladybug tools simulation plugins to investigate the impact of changing the morphological characteristics of three-block typologies (scattered, linear and courtyard) and their associated parameters to understand their multidimensional relationship with environmental conditions, outdoor thermal comfort and energy use intensity. This study based in Cairo, Egypt, considers 3430 hypothetical geometrical configurations comprising of a variety of design parameters and indicators. The results show a strong correlation between the design parameters and the combined performance of thermal comfort and energy consumption (R2 = 0.84), with urban density having the strongest impact on both thermal comfort and energy use (R2 = 0.7 and 0.95, respectively). The design parameters exhibited a consistent impact on the different typologies, albeit with varying magnitude. Compact and medium-density urban forms are shown to elicit the best overall performance, especially for ordinal orientations (e.g., ~45°) across all typologies. Compact high-density scattered forms are favoured when considering thermal comfort, while courtyards outperform other typologies when considering energy efficiency and overall performance.
- Bath Spa University United Kingdom
- University of Bath United Kingdom
Grasshopper; Ladybug tools; optimisation; urban typologies; outdoor thermal comfort; UTCI; energy loads; EUI, Technology, Grasshopper, optimisation, T, outdoor thermal comfort, Ladybug tools, urban typologies, UTCI
Grasshopper; Ladybug tools; optimisation; urban typologies; outdoor thermal comfort; UTCI; energy loads; EUI, Technology, Grasshopper, optimisation, T, outdoor thermal comfort, Ladybug tools, urban typologies, UTCI
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
