
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Air Conditioner Placement Using a Simple Thermal Environment Analysis Method for Continuous Large Spaces with Predominant Advection

doi: 10.3390/en14154663
The number of houses with large, continuous spaces has increased recently. With improvements in insulation performance, it has become possible to efficiently air condition such spaces using a single air conditioner. However, the air conditioning efficiency depends on the placement of the air conditioner. The only way to determine the optimal placement of such air conditioners is to conduct an experiment or use computational fluid dynamic analysis. However, because the analysis is performed over a limited period, it is difficult to consider non-stationarity effects without using an energy simulation. Therefore, in this study, energy simulations and computational fluid dynamics analyses were coupled to develop a thermal environment analysis method that considers non-stationarity effects, and various air conditioner arrangements were investigated to demonstrate the applicability of the proposed method. The accuracy verification results generally followed the experimental results. A case study was conducted using the calculated boundary conditions, and the results showed that the placement of two air conditioners in the target experimental house could provide sufficient air conditioning during both winter and summer. Our results suggest that this method can be used to conduct preliminary studies if the necessary data are available during design or if an experimental house is used.
- Kyushu University Japan
- Kurume Institute of Technology Japan
- Kyushu University Japan
- Ritsumeikan University Japan
- Ritsumeikan University Japan
Technology, energy simulation (ES); computational fluid dynamics (CFD); open ceiling space; optimum location, optimum location, T, open ceiling space, energy simulation (ES), computational fluid dynamics (CFD)
Technology, energy simulation (ES); computational fluid dynamics (CFD); open ceiling space; optimum location, optimum location, T, open ceiling space, energy simulation (ES), computational fluid dynamics (CFD)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
