
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Comparison of Lane Marking Detection Quality and View Range between Daytime and Night-Time Conditions by Machine Vision

doi: 10.3390/en14154666
Lateral support systems in vehicles have a high potential for reduction of lane departure crashes. To profit from their full potential, such systems should function properly in adverse conditions. Literature indicates that their accuracy varies between day and night-time. However, detailed quantifications of the systems’ performance in these conditions are rare. The aim of this study is to investigate the differences in detection quality and view range of Mobileye 630 in dry daytime and night-time conditions. On-road tests on four rural road sections in Croatia were conducted. Wilcoxon signed-rank test was used to test the difference between the number of quality rankings while absolute average, average difference and standard deviation were used to analyse the view range. Also, a paired samples t-test was used to test the difference between conditions for each line on each road. The overall results confirm that a significant difference in lane detection quality view range exists between tested conditions. “Medium” and “high” detection confidence (quality level 3 and 2), increased by 5% and 8% during night-time compared to daytime while level 0 (“nothing detected”) decreased by 12%. The view range increased (almost 16% for middle line) during daytime compared to night-time. The findings of this study expand the existing knowledge and are valuable for research and development of machine-vision systems but also for road authorities to optimize the markings’ quality performance.
- University of Rijeka, Faculty of Physics Croatia
- University of Zagreb Croatia
- University of Split Croatia
- Graz University of Technology Austria
- University of Zagreb, Faculty of Transport and Traffic Sciences Croatia
Technology, lateral support systems, T, ADAS ; Lateral support systems ; Lane detection ; Automated driving ; Visibility ; Lane keeping systems, visibility, lane keeping systems, ADAS, lane detection, automated driving, ADAS; lateral support systems; lane detection; automated driving; visibility; lane keeping systems
Technology, lateral support systems, T, ADAS ; Lateral support systems ; Lane detection ; Automated driving ; Visibility ; Lane keeping systems, visibility, lane keeping systems, ADAS, lane detection, automated driving, ADAS; lateral support systems; lane detection; automated driving; visibility; lane keeping systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
