
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cold Ageing of NMC811 Lithium-ion Batteries

doi: 10.3390/en14164724
In the application of electric vehicles, LiNi0.8Mn0.1Co0.1O2 (NMC811)-a Ni-rich cathode has the potential of replacing LiNiMnCoO2 (NMC111) due to its high energy density. However, NMC811 features relatively poor structural and thermal stabilities, which affect its cycle life. This study aims to address the limited data availability research gap on NMC811 low-temperature degradation. We aged commercial 21700 NMC811 cells at 0 °C under 0.5 C and 1 C current rates. After 200 cycles, post-mortem visual, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy, the inspections of harvested electrodes were conducted. In just 200 cold cycles, capacity drops of 25% and 49% were observed in cells aged at 1 C and 0.5 C, respectively. The fast degradation at low temperatures is largely due to lithium plating at the anode side during the charging process. The surprisingly better performance at 1 C is related to enhanced cell self-heating. After subsequent 3-month storage, the cells that experienced 200 cycles at 0 °C and 0.5 C became faulty (voltage: ≈ 0 V), possibly due to cell lithium dendrites and micro short circuits. This work demonstrates that NMC811 suffers from poor cold ageing performance and subsequent premature end-of-life.
- Johnson Matthey (Germany) Germany
- Coventry University United Kingdom
- Johnson Matthey (Germany) Germany
- Coventry University United Kingdom
Technology, cold cycling, T, lithium-ion battery, NMC811, ageing
Technology, cold cycling, T, lithium-ion battery, NMC811, ageing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
