
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems

doi: 10.3390/en14175577
handle: 11586/413498
The power system is changing towards a decarbonized one. The Kyoto protocol and the Paris climate agreement have prompted many nations to approve energy policies based on volatile renewable energy sources (RESs). However, the integration into the grid of the power generated by RESs as well as the electrification of the heating, gas and transportation sectors is becoming a huge challenge. Planning industrial and tertiary sites as net-zero energy systems (NZESs) might contribute to advance the solutions of fully integrating volatile RESs into the power system. This study aims to point out the importance of planning large energy consumer sites such as NZESs, and to depict a holistic modeling approach for this. The methodology is based on a multi-layer approach, which focuses on on-site power generation by RESs, on the improvement of energy efficiency, and on the increase of system flexibility. A qualitative case study has been conducted. It considers the planning of a Net-Zero Energy Data Center located in Germany. Results point out that new interdisciplinary and in particular social analysis methods are necessary. They might be used for accelerating the decision making process during the planning of RES-based on-site power generation systems. Besides, for computation and cooling systems, new technologies that are continuously emerging in the market should be taken into account. If well designed, they contribute to significantly decrease the whole energy demand of data center. Finally, optimal sizing of energy storage systems (electric and thermal) as well as an expedient choice of performance indicators to evaluate technology options are identified as the key factor for decreasing the external energy demand of tertiary sites, such as data center.
- Fraunhofer Institute for Factory Operation and Automation Germany
- Hochschule Magdeburg-Stendal Germany
- Fraunhofer Society Germany
- University of Bari Aldo Moro Italy
- Hochschule Magdeburg-Stendal Germany
Technology, Energy storage system, T, Net-zero energy system, Flexibility option, Renewable energy sources, 333, 620, energy storage systems; flexibility options; net-zero energy system; renewable energy sources, flexibility options, net-zero energy system, energy storage systems, renewable energy sources
Technology, Energy storage system, T, Net-zero energy system, Flexibility option, Renewable energy sources, 333, 620, energy storage systems; flexibility options; net-zero energy system; renewable energy sources, flexibility options, net-zero energy system, energy storage systems, renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
