
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Energy-Safe Algorithm for Enhancing the Battery Life for IoT Sensors’ Applications

doi: 10.3390/en14206613
handle: 11250/2826245
Energy safe is mandatory for all isolated IoT tools, such as in long way roads, mountains, or even in smart cities. If increasing the lifetime of these tools, the rentability of the global network loop becomes more efficient. Therefore, this paper presents a new approach for saving energy inside the source nodes by supervising the state of energy inside each source node and calculating the duty cycle factor. The relationship between these parameters is based on an optimization problem formulation. In this respect, the present paper is designed to propose a new approach that deals with increasing the lifetime of the wireless sensor network (WSN)-attached nodes, as fixed in the application. The newly devised design is based on implementing the IEEE 802.15.4 standard beacon-enabled mode, involving a cluster tree topology. Accordingly, every subgroup is allotted to apply a specifically different duty cycle, depending on the battery’s remaining energy level, which contributes to creating a wide range of functional modes. Hence, various thresholds are defined. Simulation results prove the efficiency of the proposed approach and show the energetic benefit. The proposed flowchart has minimized the consumed energy for the WSN, which improves the battery lifetime and enhances the IoT application’s robustness. Simulations and experiments have been carried out under different conditions and the results prove that the proposed method is a viable solution.
- University of Gabès Tunisia
- Centro Universitário da FEI Brazil
- Østfold University College Norway
- Østfold University College Norway
- University of Gabès Tunisia
IEEE 802.15.4, IoT, Technology, algorithm, communication, T, energy optimization, battery life, VDP::Teknologi: 500, smart city
IEEE 802.15.4, IoT, Technology, algorithm, communication, T, energy optimization, battery life, VDP::Teknologi: 500, smart city
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
